UV-Visible Missions for NASA Long-Duration Balloons (LDBs)

by Charles L. Joseph, Assoc. Research Professor Physics & Astronomy Dept., Rutgers U. 7-Aug-07

Motivation

A consistent picture of the evolution of the Universe from the Big Bang to the present is emerging. Some data, however, suggest galaxies may not fit this model!

Payload

HAWK Balloon Mission Objective:

Study all motions in A 10 Mpc³ Volume!

GSS-104-4024 (z=0.81). HST/NICMOS+WFPC2 A high-redshift galaxy showing the satellite dwarfs predicted by models. (Data taken by CoI Vogt.)

Most distant galaxies should have dwarf satellites

HAWK LDB Balloon -- Can't do it with **Large Ground-based Telescopes with AO**

Ground-IR have Bad Thermal Backgrounds!

Good Seeing Without AO

1.6 u

 2.2μ

 2.2μ

1.6 u

 1.0μ

1.0 u

 0.8μ

 0.6μ

HDF North

HAWK Balloon Observing Galaxies as a Function of Z, **Mission Objective: Distance** (i.e. Age of Universe) Measure luminous and **Emission Map** dark matter in galaxies z = 0.75**Emission Map** z = 1.35Emission Map z = 0.35e263g14 **Rotation Curves** Velocity Map z = 0.75Velocity Map z = 0.35z = 1.35Velocity Map z = 0.75z = 0.35z = 1.35

LDB vs. Mauna Kea Altitudes

Image Quality Comparison

Alt.	Aperture	$\mathbf{r_{0}}\left(\mathbf{m}\right)$	FWHM(")	θ_0 ('')	τ_0 (sec)
4 km	CFHT 3.8m	0.18	0.7	3	0.0036
35 km	2.4 m	~250	0.048	~600	~5
35km	10 m	~250	0.012	~600	~5

Atmospheric Parameters Comparison

h (km)	P (mbars)	T(K)	ρ (gm m ⁻³)	H ₂ O Vapor (gm m ⁻³)	
4	680	253	937	0.68	
35	4.7	222	7.4	0.00011	

Data from Ford et al.

Telescope optical design

System is fully steerable over 0.5° x 1.5° using only tip/tilt of a 10 cm flat mirror

Anamorphic field of regard

On-axis

Steering mirror in middle of range Beam footprint in middle of pickoff, tertiary mirrors

System looking down 0.25°

Steering mirror tilted 2.5° Beam footprint shifted on pickoff, tertiary mirrors

System looking left 0.75°

Steering mirror tilted 7.5° Beam footprint shifted on pickoff, tertiary mirrors

Excellent performance

Nominally designed so that rms wavefront error RMSWE is limited to 20 nm.

Low imaging distortion (4% max at corners of field)

Giant field requires large tertiary mirror

KITE

Kinematical Imaging Trailblazer Experiment

Fabry-Perot observations of NLR gas of AGNs

Telescope: 0.75 m telescope

Near-UV detector: 3x sensitivity

Swallow-tail Kite by D.A. Rintoul, USGS

Stellar Evolution of Cepheids and other Binaries using the Cross-Dispersion Imaging Technique. (3 mas Resolution)

KITE Kinematical Imaging Trailblazer Experiment

Innovative Detector Designs with increase QE and important component of ACS System

Layered Attitude Control System (ACS)

